Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/986 -
Telegram Group & Telegram Channel
Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/986
Create:
Last Update:

Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/986

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA